Package: DTRlearn2 2.0

DTRlearn2: Statistical Learning Methods for Optimizing Dynamic Treatment Regimes

We provide a comprehensive software to estimate general K-stage DTRs from SMARTs with Q-learning and a variety of outcome-weighted learning methods. Penalizations are allowed for variable selection and model regularization. With the outcome-weighted learning scheme, different loss functions - SVM hinge loss, SVM ramp loss, binomial deviance loss, and L2 loss - are adopted to solve the weighted classification problem at each stage; augmentation in the outcomes is allowed to improve efficiency. The estimated DTR can be easily applied to a new sample for individualized treatment recommendations or DTR evaluation.

Authors:Yuan Chen, Ying Liu, Donglin Zeng, Yuanjia Wang

DTRlearn2_2.0.tar.gz
DTRlearn2_2.0.zip(r-4.5)DTRlearn2_2.0.zip(r-4.4)DTRlearn2_2.0.zip(r-4.3)
DTRlearn2_2.0.tgz(r-4.5-any)DTRlearn2_2.0.tgz(r-4.4-any)DTRlearn2_2.0.tgz(r-4.3-any)
DTRlearn2_2.0.tar.gz(r-4.5-noble)DTRlearn2_2.0.tar.gz(r-4.4-noble)
DTRlearn2_2.0.tgz(r-4.4-emscripten)DTRlearn2_2.0.tgz(r-4.3-emscripten)
DTRlearn2.pdf |DTRlearn2.html
DTRlearn2/json (API)

# Install 'DTRlearn2' in R:
install.packages('DTRlearn2', repos = c('https://ychen178.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/ychen178/dtrlearn2/issues

Datasets:
  • adhd - A 2-stage SMART data of children with ADHD

On CRAN:

Conda:

3.54 score 7 stars 7 scripts 273 downloads 5 exports 13 dependencies

Last updated 3 years agofrom:5a873a1484. Checks:4 OK, 5 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 15 2025
R-4.5-winOKMar 15 2025
R-4.5-macOKMar 15 2025
R-4.5-linuxOKMar 15 2025
R-4.4-winNOTEMar 15 2025
R-4.4-macNOTEMar 15 2025
R-4.4-linuxNOTEMar 15 2025
R-4.3-winNOTEMar 15 2025
R-4.3-macNOTEMar 15 2025

Exports:owlpredict.owlpredict.qlqlsim_Kstage

Dependencies:codetoolsforeachglmnetiteratorskernlablatticeMASSMatrixRcppRcppEigenshapesurvivalWeightSVM